Stretching and unzipping nucleic acid hairpins using a synthetic nanopore
نویسندگان
چکیده
We have explored the electromechanical properties of DNA by using an electric field to force single hairpin molecules to translocate through a synthetic pore in a silicon nitride membrane. We observe a threshold voltage for translocation of the hairpin through the pore that depends sensitively on the diameter and the secondary structure of the DNA. The threshold for a diameter 1.5 < d < 2.3 nm is V > 1.5 V, which corresponds to the force required to stretch the stem of the hairpin, according to molecular dynamics simulations. On the other hand, for 1.0 < d < 1.5 nm, the threshold voltage collapses to V < 0.5 V because the stem unzips with a lower force than required for stretching. The data indicate that a synthetic nanopore can be used like a molecular gate to discriminate between the secondary structures in DNA.
منابع مشابه
Internal vs Fishhook Hairpin DNA: Unzipping Locations and Mechanisms in the α-Hemolysin Nanopore
Studies on the interaction of hairpin DNA with the α-hemolysin (α-HL) nanopore have determined hairpin unzipping kinetics, thermodynamics, and sequence-dependent DNA/protein interactions. Missing from these results is a systematic study comparing the unzipping process for fishhook (one-tail) vs internal (two-tail) hairpins when they are electrophoretically driven from the cis to the trans side ...
متن کاملElectromechanical unzipping of individual DNA molecules using synthetic sub-2 nm pores.
Nanopores have recently emerged as high-throughput tools for probing and manipulating nucleic acid secondary structure at the single-molecule level. While most studies to date have utilized protein pores embedded in lipid bilayers, solid-state nanopores offer many practical advantages which greatly expand the range of applications in life sciences and biotechnology. Using sub-2 nm solid-state n...
متن کاملExtracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins.
Single-molecule force experiments provide powerful new tools to explore biomolecular interactions. Here, we describe a systematic procedure for extracting kinetic information from force-spectroscopy experiments, and apply it to nanopore unzipping of individual DNA hairpins. Two types of measurements are considered: unzipping at constant voltage, and unzipping at constant voltage-ramp speeds. We...
متن کاملNanopore unzipping of individual DNA hairpin molecules.
We have used the nanometer scale alpha-Hemolysin pore to study the unzipping kinetics of individual DNA hairpins under constant force or constant loading rate. Using a dynamic voltage control method, the entry rate of polynucleotides into the pore and the voltage pattern applied to induce hairpin unzipping are independently set. Thus, hundreds of unzipping events can be tested in a short period...
متن کاملForce fluctuations assist nanopore unzipping of DNA.
We experimentally study the statistical distributions and the voltage dependence of the unzipping time of 45 base-pair-long double-stranded DNA through a nanopore. We then propose a quantitative theoretical description considering the nanopore unzipping process as a random walk of the opening fork through the DNA sequence energy landscape biased by a time-fluctuating force. To achieve quantitat...
متن کامل